Domain representable spaces and topological games

Judyta Bąk

University of Silesia in Katowice

Hejnice 2017

Judyta Bąk Domain representable spaces and topological games

- K. Martin, "Topological games in domain theory", 2003
- H. Benett, D. Lutzer, "Strong completness Properties in Topology", 2009

→ < Ξ → <</p>

- K. Martin, "Topological games in domain theory", 2003
- H. Benett, D. Lutzer, "Strong completness Properties in Topology", 2009

< ∃ →

- K. Martin, "Topological games in domain theory", 2003
- H. Benett, D. Lutzer, "Strong completness Properties in Topology", 2009

Example

The partially ordered set:

$$P = \{[a, b] : a \leqslant b\}$$
$$[a, b] \sqsubseteq [c, d] \Leftrightarrow [c, d] \subseteq [a, b]$$

The specific relation on *P*:

$$[a,b] \ll [c,d] \Leftrightarrow [c,d] \subseteq (a,b)$$

The homeomorphism $h: \max P \to \mathbb{R}$:

$$h([x,x]) = x$$

・ 同 ト ・ 三 ト ・

Example

The partially ordered set:

$$P = \{[a, b] : a \leqslant b\}$$
$$[a, b] \sqsubseteq [c, d] \Leftrightarrow [c, d] \subseteq [a, b]$$

The specific relation on *P*:

$$[a,b] \ll [c,d] \Leftrightarrow [c,d] \subseteq (a,b)$$

The homeomorphism $h: \max P \to \mathbb{R}$:

$$h([x,x]) = x$$

• = • •

Example

The partially ordered set:

$$P = \{[a, b] : a \leqslant b\}$$
$$[a, b] \sqsubseteq [c, d] \Leftrightarrow [c, d] \subseteq [a, b]$$

The specific relation on *P*:

$$[a,b] \ll [c,d] \Leftrightarrow [c,d] \subseteq (a,b)$$

The homeomorphism $h: \max P \to \mathbb{R}$:

$$h([x,x]) = x$$

• W. Fleissner, L. Yengulalp, "When Cp(X) is Domain Representable", 2013

We say that a triple (Q, \ll, B) κ -represents X and that X is κ -domain representable if

(1) $B: Q \to \tau^*(X)$ and $\{B(q): q \in Q\}$ is a base for $\tau(X)$,

 $(2) \ll$ is a transitive, antisymmetric relation on $Q_{
m c}$

(3) for all $p, q \in Q$, $p \ll q$ implies $B(p) \supseteq B(q)$,

(4) for all $x \in X$ if $p, p' \in \{q \in Q : x \in B(q)\}$, then there exists $r \in \{q \in Q : x \in B(q)\}$ satisfying $p, q \ll r$,

(5)_κ if D ∈ [Q]^{<κ} and (D, ≪) is upward directed (every pair of elements has an upper bound), then ∩{B(q) : q ∈ D} ≠ Ø.

We say that a triple (Q, \ll, B) κ -represents X and that X is κ -domain representable if

(1) $B: Q \to \tau^*(X)$ and $\{B(q): q \in Q\}$ is a base for $\tau(X)$,

(2) \ll is a transitive, antisymmetric relation on Q,

(3) for all $p, q \in Q$, $p \ll q$ implies $B(p) \supseteq B(q)$,

(4) for all $x \in X$ if $p, p' \in \{q \in Q : x \in B(q)\}$, then there exists $r \in \{q \in Q : x \in B(q)\}$ satisfying $p, q \ll r$,

(5)_{κ} if $D \in [Q]^{<\kappa}$ and (D, \ll) is upward directed (every pair of elements has an upper bound), then $\bigcap \{B(q) : q \in D\} \neq \emptyset$.

We say that a triple (Q, \ll, B) κ -represents X and that X is κ -domain representable if

(1) $B: Q \to \tau^*(X)$ and $\{B(q): q \in Q\}$ is a base for $\tau(X)$,

(2) \ll is a transitive, antisymmetric relation on Q,

(3) for all $p, q \in Q$, $p \ll q$ implies $B(p) \supseteq B(q)$,

(4) for all $x \in X$ if $p, p' \in \{q \in Q : x \in B(q)\}$, then there exists $r \in \{q \in Q : x \in B(q)\}$ satisfying $p, q \ll r$,

(5)_κ if D ∈ [Q]^{<κ} and (D, ≪) is upward directed (every pair of elements has an upper bound), then ∩{B(q) : q ∈ D} ≠ Ø.

If the condition $(5)_{\kappa}$ is satisfied for every cardinal number κ , we say that a space X is **domain representable**.

We say that a triple (Q, \ll, B) κ -represents X and that X is κ -domain representable if

(1)
$$B: Q \to \tau^*(X)$$
 and $\{B(q): q \in Q\}$ is a base for $\tau(X)$,

(2) \ll is a transitive, antisymmetric relation on Q,

(3) for all $p, q \in Q$, $p \ll q$ implies $B(p) \supseteq B(q)$,

(4) for all $x \in X$ if $p, p' \in \{q \in Q : x \in B(q)\}$, then there exists $r \in \{q \in Q : x \in B(q)\}$ satisfying $p, q \ll r$,

(5)_κ if D ∈ [Q]^{<κ} and (D, ≪) is upward directed (every pair of elements has an upper bound), then ∩{B(q) : q ∈ D} ≠ Ø.

We say that a triple (Q, \ll, B) κ -represents X and that X is κ -domain representable if

(1)
$$B: Q \to \tau^*(X)$$
 and $\{B(q): q \in Q\}$ is a base for $\tau(X)$,

(2) \ll is a transitive, antisymmetric relation on Q,

(3) for all $p, q \in Q$, $p \ll q$ implies $B(p) \supseteq B(q)$,

- (4) for all $x \in X$ if $p, p' \in \{q \in Q : x \in B(q)\}$, then there exists $r \in \{q \in Q : x \in B(q)\}$ satisfying $p, q \ll r$,
- (5)_{κ} if $D \in [Q]^{<\kappa}$ and (D, \ll) is upward directed (every pair of elements has an upper bound), then $\bigcap \{B(q) : q \in D\} \neq \emptyset$.

We say that a triple (Q, \ll, B) κ -represents X and that X is κ -domain representable if

(1)
$$B: Q \to \tau^*(X)$$
 and $\{B(q): q \in Q\}$ is a base for $\tau(X)$,

(2) \ll is a transitive, antisymmetric relation on Q,

(3) for all $p, q \in Q$, $p \ll q$ implies $B(p) \supseteq B(q)$,

- (4) for all $x \in X$ if $p, p' \in \{q \in Q : x \in B(q)\}$, then there exists $r \in \{q \in Q : x \in B(q)\}$ satisfying $p, q \ll r$,
- (5)_{κ} if $D \in [Q]^{<\kappa}$ and (D, \ll) is upward directed (every pair of elements has an upper bound), then $\bigcap \{B(q) : q \in D\} \neq \emptyset$.

A metric space is a domain representable iff it is completely metrizable.

Theorem[Benett, Lutzer, 2006]

If a space is Čech complete, then it is domain representable.

Theorem[Benett, Lutzer, 2006]

If a space X is domain representable and a space Y is a G_{δ} -subspace of X, then Y is a domain representable space.

A metric space is a domain representable iff it is completely metrizable.

Theorem[Benett, Lutzer, 2006]

If a space is Čech complete, then it is domain representable.

Theorem[Benett, Lutzer, 2006]

If a space X is domain representable and a space Y is a G_{δ} -subspace of X, then Y is a domain representable space.

/⊒ ▶ < ⊒ ▶ <

A metric space is a domain representable iff it is completely metrizable.

Theorem[Benett, Lutzer, 2006]

If a space is Čech complete, then it is domain representable.

Theorem[Benett, Lutzer, 2006]

If a space X is domain representable and a space Y is a G_{δ} -subspace of X, then Y is a domain representable space.

We say that a triple (Q, \ll, B) π - represents X and that X is π -domain representable if

 $(1)_\pi \;\; B: Q o au^*(X)$ and $\{B(q): q \in Q\}$ is a $\pi-$ base for au(X),

 $(2) \ll$ is a transitive, antisymmetric relation on $Q_{
m c}$

- (3) for all $p, q \in Q$, $p \ll q$ implies $B(p) \supseteq B(q)$,
- $(4)_{\pi}$ if $q, p \in Q$ satisfy $B(q) \cap B(p) \neq \emptyset$, there exists $r \in Q$ satisfying $p, q \ll r$,
 - (5) if $D \subseteq Q$ and (D, \ll) is upward directed (every pair of elements has an upper bound), then $\bigcap \{B(q) : q \in D\} \neq \emptyset$.

We say that a triple (Q, \ll, B) π - represents X and that X is π -domain representable if

$$(1)_\pi \,\, B: Q o au^*(X)$$
 and $\{B(q): q \in Q\}$ is a $\pi-$ base for $au(X),$

(2) \ll is a transitive, antisymmetric relation on Q,

(3) for all
$$p, q \in Q$$
, $p \ll q$ implies $B(p) \supseteq B(q)$,

$$(4)_\pi$$
 if $q,p\in Q$ satisfy $B(q)\cap B(p)
eq \emptyset$, there exists $r\in Q$ satisfying $p,q\ll r,$

(5) if $D \subseteq Q$ and (D, \ll) is upward directed (every pair of elements has an upper bound), then $\bigcap \{B(q) : q \in D\} \neq \emptyset$.

There exists an example of a space, which it is countably π -domain representable, but it isn't π -domain representable space. We consider a space

$$\sigma(\{0,1\}^{\omega_1}) = \{x \in \{0,1\}^{\omega_1} : |\alpha < \omega_1 : x(\alpha) = 1| \le \omega\}$$

with the topology generated by the base

$$\mathcal{B} = \{ pr_A^{-1}(x) : A \in [\omega_1]^{\leqslant \omega}, x \in \{0,1\}^A \},\$$

where $pr_A: \sigma(\{0,1\}^{\omega_1}) \to \{0,1\}^A$ means projection for $A \in [\omega_1]^{\leqslant \omega}$.

There exists an example of a space, which it is countably π -domain representable, but it isn't π -domain representable space. We consider a space

$$\sigma(\{0,1\}^{\omega_1}) = \{x \in \{0,1\}^{\omega_1} : |\alpha < \omega_1 : x(\alpha) = 1| \leqslant \omega\}$$

with the topology generated by the base

$$\mathcal{B} = \{ pr_A^{-1}(x) : A \in [\omega_1]^{\leqslant \omega}, x \in \{0,1\}^A \},\$$

where $pr_A: \sigma(\{0,1\}^{\omega_1}) o \{0,1\}^A$ means projection for $A \in [\omega_1]^{\leqslant \omega}$.

There exists an example of a space, which it is countably π -domain representable, but it isn't π -domain representable space. We consider a space

$$\sigma(\{0,1\}^{\omega_1}) = \{x \in \{0,1\}^{\omega_1} : |\alpha < \omega_1 : x(\alpha) = 1| \leqslant \omega\}$$

with the topology generated by the base

$$\mathcal{B} = \{ pr_A^{-1}(x) : A \in [\omega_1]^{\leqslant \omega}, x \in \{0,1\}^A \},\$$

where $pr_A: \sigma(\{0,1\}^{\omega_1}) \to \{0,1\}^A$ means projection for $A \in [\omega_1]^{\leqslant \omega}$.

Let $Q = \mathcal{B}$ and $B: Q \rightarrow Q$ be identity.

For every $U \in \mathcal{B}$ let v(U) means a set A such that $pr_A^{-1}(x) = U$ for $x \in \{0,1\}^A$.

We define a relation \ll as follows

$$U \ll V \Leftrightarrow v(U) \subseteq v(V) \Leftrightarrow V \subseteq U$$

for $U, V \in \mathcal{B}$.

The triple (Q, \ll, B) countably π -represents the space $\sigma(\{0, 1\}^{\omega_1})$.

A 3 b

Let $Q = \mathcal{B}$ and $B : Q \rightarrow Q$ be identity.

For every $U \in \mathcal{B}$ let v(U) means a set A such that $pr_A^{-1}(x) = U$ for $x \in \{0,1\}^A$.

We define a relation \ll as follows

$$U \ll V \Leftrightarrow v(U) \subseteq v(V) \Leftrightarrow V \subseteq U$$

for $U, V \in \mathcal{B}$.

The triple (Q, \ll, B) countably π -represents the space $\sigma(\{0, 1\}^{\omega_1})$.

Let $Q = \mathcal{B}$ and $B : Q \rightarrow Q$ be identity.

For every $U \in \mathcal{B}$ let v(U) means a set A such that $pr_A^{-1}(x) = U$ for $x \in \{0,1\}^A$.

We define a relation \ll as follows

$$U \ll V \Leftrightarrow v(U) \subseteq v(V) \Leftrightarrow V \subseteq U$$

for $U, V \in \mathcal{B}$

The triple (Q, \ll, B) countably π -represents the space $\sigma(\{0, 1\}^{\omega_1})$.

Let $Q = \mathcal{B}$ and $B : Q \rightarrow Q$ be identity.

For every $U \in \mathcal{B}$ let v(U) means a set A such that $pr_A^{-1}(x) = U$ for $x \in \{0,1\}^A$.

We define a relation \ll as follows

$$U \ll V \Leftrightarrow v(U) \subseteq v(V) \Leftrightarrow V \subseteq U$$

for $U, V \in \mathcal{B}$.

The triple (Q, \ll, B) countably π -represents the space $\sigma(\{0, 1\}^{\omega_1})$.

Two players α and β alternately choose open nonempty sets with

 $\begin{array}{cccc} \beta & U_0 & & U_1 \\ & & & & \\ \alpha & & V_0 & & V_1 \end{array}$

Player α wins this play if $\bigcap_{n=1}^{\infty} V_n \neq \emptyset$. Otherwise β wins.

Denoted this game by BM(X).

4 3 b

-

Two players α and β alternately choose open nonempty sets with

 $\begin{array}{cccc} \beta & U_0 & U_1 \\ & & & \\ \alpha & V_0 & V_1 \end{array}$

Player α wins this play if $\bigcap_{n=1}^{\infty} V_n \neq \emptyset$. Otherwise β wins.

Denoted this game by BM(X).

The strong Choquet game is defined as follows:

$$\beta \quad U_0 \ni x_0 \qquad U_1 \ni x_1$$

$$\alpha \qquad V_0 \qquad V_1$$

Player α wins if $\bigcap \{ V_n : n \in \omega \} \neq \emptyset$. Otherwise β wins.

. . .

Denoted this game by Ch(X).

A strategy for the player α in the game BM(X) (or Ch(X)) is a rule for choosing what to play each round given the full information of moves up until that round.

A winning strategy for the player α is a strategy that produces a win for that player α in any game when playing according to that startegy.

A strategy for the player α in the game BM(X) (or Ch(X)) is a rule for choosing what to play each round given the full information of moves up until that round.

A winning strategy for the player α is a strategy that produces a win for that player α in any game when playing according to that startegy.

If a space X is domain representable, then the player α has a winning strategy in Ch(X).

Theorem[Fleissner, Yengulalp, 2015]

If a space X is countably domain representable, then the player α has a winning strategy in Ch(X).

Theorem[J.B., A. Kucharski]

If the player α has a winning strategy in Ch(X), then X is countably domain representable.

If a space X is domain representable, then the player α has a winning strategy in Ch(X).

Theorem[Fleissner, Yengulalp, 2015]

If a space X is countably domain representable, then the player α has a winning strategy in Ch(X).

Theorem[J.B., A. Kucharski]

If the player α has a winning strategy in Ch(X), then X is countably domain representable.

If a space X is domain representable, then the player α has a winning strategy in Ch(X).

Theorem[Fleissner, Yengulalp, 2015]

If a space X is countably domain representable, then the player α has a winning strategy in Ch(X).

Theorem[J.B., A. Kucharski]

If the player α has a winning strategy in Ch(X), then X is countably domain representable.

Theorem[J. B., A. Kucharski]

The player α has a winning strategy in the BM(X) iff X is countably π - domain representable.

E ▶ ...

Thank You for Your attention!

Judyta Bąk Domain representable spaces and topological games